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ABSTRACT 
 
This paper describes the application of biologically-inspired algorithms and concepts to the design of wideband antenna 
arrays.  In particular, we address two specific design problems.  The first involves the design of a constrained-feed 
network for a Rotman-lens beamformer.  We implemented two evolutionary optimization (EO) approaches, namely a 
simple genetic algorithm (SGA) and a competent genetic algorithm.  We conducted simulations based on experimental 
data, which effectively demonstrate that the competent GA outperforms the SGA (i.e., finds a better design solution) as 
the objective function becomes less specific and more “general.”  The second design problem involves the 
implementation of polyomino-shaped subarrays for sidelobe suppression of large, wideband planar arrays.  We use a 
modified screen-saver code to generate random polyomino tilings.  A separate code assigns array values to each element 
of the tiling (i.e., amplitude, phase, time delay, etc.) and computes the corresponding far-field radiation pattern.  In order 
to conduct a statistical analysis of pattern characteristics vs. tiling geometry, we needed a way to measure the 
“similarity” between two arbitrary tilings to ensure that our sampling of the tiling space was somewhat uniformly 
distributed.  We ultimately borrowed a concept from neural network theory, which we refer to as the “dot-product 
metric,” to effectively categorize tilings based on their degree of similarity. 
 
Keywords: genetic algorithm, competent genetic algorithm, optimization algorithm, classification, wideband array 
 
 

1. INTRODUCTION 
 
This paper describes the application of biologically-inspired algorithms and concepts to the design of wideband antenna 
arrays.  In particular, we address two specific design problems.  Section 2 describes the application of two evolutionary 
optimization algorithms to the design of a constrained-feed network for a Rotman-lens beamformer.  Section 3 describes 
a method to measure the “degree of similarity” between two arbitrary planar array geometries.  Basically, we borrow a 
concept from neural network theory, which we refer to as the “dot-product metric,” to effectively categorize polyomino 
arrays based on their degree of similarity.  Section 4 contains a summary of our results and conclusions. 

 
 
2. SIMPLE GA VS. COMPETENT GA: OPTIMIZATION OF A CONSTRAINED-FEED NETWORK 
 
This section directly compares the performance characteristics of simple and competent genetic algorithms (GAs) by 
applying both methods to the same optimization problem.  Section 2.1 provides an overview of the design theory and 
principles necessary for the invention and implementation of fast, scalable (i.e., competent) genetic algorithms.  We 
briefly outline the specific competent GA used in this experiment, namely the hierarchical Bayesian optimization 
algorithm (hBOA).  Section 2.2 provides an overview of the optimization problem, which involves the design of a 
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constrained-feed network for a linear array.  We discuss the details of each approach (SGA vs. hBOA), and we describe 
three variations of the objective function used in this experiment.  We present the results, demonstrating that the problem 
is sufficiently difficult such that acceptable solutions are not obtainable using a SGA (regardless of the objective 
function).  On the other hand, we show that the competent GA is able to obtain an acceptable solution when the third 
objective function is implemented.  Finally, in Section 2.3, we summarize our results and draw some interesting 
conclusions concerning the fundamental differences between simple and competent GAs. 
 
2.1 GA design theory and competent GAs 
 
SGAs are known for their robust optimization capabilities and have been successfully used in a variety of practical 
antenna problems [1].  A SGA, however, does not always address the issue of linkage (i.e., chromosomal encoding) 
adequately.  This section gives an introduction to competent GAs – advanced optimization techniques designed to 
determine the optimal linkage of bounded, difficult problems.   
 
To better understand the concept of bounded, difficult problems, let us first consider two extreme cases – OneMax and 
needle-in-a-haystack (NIAH).  The objective of the OneMax problem is to maximize the number of ones in a binary 
string.  For example, the optimal solution for a 5-bit chromosome is [1 1 1 1 1].  Furthermore, the fitness of a 
chromosome is directly proportional to the number of ones in the string.  Thus, [0 1 0 1 1], which has a total of three 
ones, has a higher fitness than [1 1 0 0 0], which only has two ones.  The NIAH problem, on the other hand, is defined 
such that the fitness of one specific chromosome is highest and those of all other chromosomes are equally low.   For 
example, suppose chromosome [1 0 0 1 1] has a fitness equal to 1.0 and chromosome [* * * * *] ≠ [1 0 0 1 1] (i.e., every 
other chromosome) has a fitness equal to 0.0.  Hence, chromosome [1 0 0 1 1] is “the needle in a haystack” the algorithm 
is trying to find.   
 
On one hand, the genes in the OneMax problem are independent with respect to each other, and hence the OneMax 
problem is fully decomposable.  It is considered to be a GA-simple problem, and a SGA can easily solve it within a sub-
quadratic number of function evaluations.  On the other hand, the order of linkage in the NIAH problem is equal to the 
chromosome length, and hence the NIAH problem is not decomposable.  The NIAH problem is considered to be GA-
difficult, and it has been shown that no algorithm can do any better than a random search for this type of problem.  On 
average, it requires an exponential number of function evaluations to find the optimal solution.  So we ask ourselves, 
how efficiently can we solve a problem that falls somewhere between these two extremes?  For example, suppose that 
we have an additive NIAH problem, which is merely a concatenation of several bounded-order NIAHs.  Can we find the 
optimum quickly?  More generally, can we design GAs that solve such nearly decomposable problems quickly, reliably, 
and accurately?  In the following sections, we develop an approach that addresses these issues. 
 
2.1.1 The Bayesian Optimization Algorithm (BOA) 
 
For a given problem, the Bayesian optimization algorithm (BOA) [2,3] evolves a population of candidate solutions (i.e., 
chromosomes) by building and sampling Bayesian networks [4].  BOA first generates a population of candidate 
solutions either randomly or according to some prior knowledge of the given problem.  Then, the population is updated 
each generation via the following four steps: 

 
(1) Promising candidate solutions are selected using a GA-selection operator such as tournament selection or 

truncation selection. 
(2) A Bayesian network is built to estimate the probability distribution of these promising candidate solutions. 
(3) New candidate solutions are generated by sampling the Bayesian network. 
(4) The next-generation population incorporates the new candidate solutions by replacing part or all of the current 

population. 
 

These steps are repeated until some termination criteria are met (i.e., maximum number of generations has been reached, 
etc.). 
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2.1.2  Learning Bayesian networks 
 
This section briefly describes how BOA constructs Bayesian networks during evolution.  A Bayesian network describes 
the following Bayesian, joint-probability distribution, 

 

∏
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where X = (X1, X2, …, Xn) is a vector of variables, Ωi is a subset of X, and p(Xi | Ωi) is the conditional probability of Xi 
given Ωi. 
   
We can visualize a Bayesian network as a directed, acyclic graph, where the nodes represent variables and the edges 
represent conditional dependencies.  For instance, the following Bayesian joint probability can be expressed by the graph 
shown in Figure 1, 
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Developing a Bayesian network for a specific problem involves two subtasks – learning the network structure, and 
calculating the conditional probabilities.  Calculating the conditional probabilities for a given structure is 
straightforward, because the probability of each variable in the population is specified.  Thus, the maximum likelihood 
of the conditional probabilities can be obtained by simply calculating the relative frequencies observed in the population.  
To learn the structure, the current version of BOA adopts a minimum-description-length 
(MDL) scoring metric in conjunction with a greedy algorithm.  Initially, the structure 
consists of nodes with no edges.  The greedy algorithm then updates the graph by one of 
the following three operators: (1) edge addition, (2) edge removal, or (3) edge reversal.  
These steps are performed edge by edge under the guidance of the MDL scoring metric, 
which has two objectives, namely model compactness and model accuracy.  A simple 
network, which does not describe the given data well, possesses high model compactness 
but low model accuracy; on the other hand, a complex network, which almost perfectly 
describes the given data, possesses high model accuracy but low model compactness.  
Ultimately, we desire a network that is somewhere between these two extremes.  The greedy algorithm terminates when 
no improvement to the MDL scoring metric can be made.  
 
2.1.3 Hierarchical decomposition – from BOA to hBOA 
 
Hierarchical structures appear in real-world systems and real-world problems [5] and typically refer to situations in 
which higher-level interactions are not revealed until lower-level interactions have been recognized.  We humans often 
utilize hierarchical decomposition to solve problems in either a bottom-up or top-down manner.  Hierarchical 
decomposition effectively reduces problem difficulty, and hence enables us to solve more difficult problems.   

Pelikan [2] recognizes three key issues regarding the success of hierarchical decomposition: 
 
(1) Proper decomposition.  At each level, the algorithm needs to be capable of properly decomposing the 

problem.  A proper decomposition reduces the problem complexity and hence improves the scalability of the 
algorithm. 

(2) Chunking.  Each sub-solution in a lower level can be seen as a chunk.  The algorithm should be capable of 
properly representing each chunk as one single variable when solving the next upper level. 

(3) Preservation of alternative candidate solutions.  Since the interactions at a higher level do not reveal 
themselves until the interactions at the lower levels have been recognized, preserving alternative candidate 
solutions is important for a hierarchical problem solver. 

 
By applying these three ideas, the hierarchical Bayesian optimization algorithm (hBOA) was constructed.  Basically, 
hBOA utilizes BOA to decompose the problem at successive levels of problem difficulty. 
 

Figure 1.  Graphical 
representation of a 
Bayesian network. 
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To accomplish chunking, we must consider two objectives.  First, the model must be able to merge chunks from lower 
levels (sub-solutions) to form larger chunks (more complete solutions) at higher levels.  Secondly, the model needs to 
compress the representations of the chunks such that only relevant information is stored.  The Bayesian network merges 
variables into groups implicitly, and hBOA represents sub-solutions efficiently by recognizing the local structures in the 
Bayesian networks.  Specifically, for each variable in the network, hBOA utilizes one decision graph to encode the 
conditional probabilities associated with the variable.  The use of decision graphs reduces the number of conditional 
probabilities that need to be stored, and hence more complex models can be represented with the same amount of 
memory space.  As a result, more efficient learning is achieved. 
 
In order to preserve alternate candidate solutions, hBOA employs a niching technique, namely restricted tournament 
replacement (RTR) [2, 6].  HBOA has been shown to have a stronger ability than BOA to conquer hierarchical 
difficulties [2, 6, 7].  A more thorough explanation of hBOA is available in Pelikan’s thesis [2] or other publications [6 – 
9]. 
 
2.2 Problem statement: optimization of a constrained-feed network for a linear array 
 
This section describes an antenna system designed for space-
based and airborne radar applications.  The goal of this 
system is to produce a far-field radiation pattern having at 
least –30 dB sidelobes over a 20% frequency bandwidth.  
This is accomplished by implementing an optimized, 
constrained-feed network.  The following overview is 
intended to provide the reader with enough background 
information to understand the details of the system 
optimization.  For further information about the system 
design and implementation, the reader is referred to [10]. 
 
Figure 2 shows a single section of the antenna system, which 
basically consists of a front-end array and a constrained feed 
network.  An incoming plane wave impinges the N-element 
linear array, and the resulting element excitations are 
propagated through an N by M Rotman lens, the outputs of 
which are weighted and fed into an M by M Butler Matrix.  
The center M/2 Butler outputs from each of P sections are 
time-delayed, weighted, and combined to compute the final 
radiation pattern of the system.  In order to meet the system 
specifications described above, we need to optimize the 
weights that lie between the Rotman lens beamports and the 
Butler matrix inputs (i.e., wi) for P sections of the system. 
 
The system parameters are as follows: frequency band of 
operation = 9.0 – 11.0 GHz, center frequency f0 = 10.0 GHz, 
N = 64, d = 0.5λ0 (center-frequency wavelength), M = 8, P = 
3. 
 
2.2.1 Simple genetic algorithm (SGA) 
 
The antenna system consists of three sections, each containing 
eight complex weights (i.e., amplitude and phase); therefore, we 
must optimize a total of 24 complex weights in order to meet the 
system requirements.  Figure 3 shows the chromosomal 
representation.  We chose a binary encoding scheme, and we 
represented each complex weight with 16 bits (i.e., 8 bits 
amplitude and phase).  Thus, the length of the chromosome is 384 
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Figure 2.  Section block diagram. 

Figure 3.  Chromosomal representation 



 

 5

bits.  We arbitrarily chose to encode the amplitudes along the first half of the chromosome and the phases along the 
second half.  Both the amplitudes and phases are numbered sequentially along each half as shown in the figure.  We 
restricted the amplitudes to lie in the interval [0 1] and the phases to lie in the interval [0° 360°].  It is also worth noting 
that we used an 8-bit gray code for both the amplitude and phase encoding schemes [1]. 
 
Initially, the algorithm forms a random population of 200 chromosomes (i.e., parents).  Each member of the population 
is evaluated and ranked by the objective function.  Next, a mating pool of 200 individuals is created via binary 
tournament selection (n-tournament selection is when n individuals are randomly selected from the population, and the 
one with the highest fitness is selected for the mating pool [11]).  Next, two individuals from the mating pool are chosen 
randomly to create an offspring via two-point crossover.  This process is repeated until 200 offspring have been 
generated (i.e., entirely replace the previous population).  Each child is subjected to an operator, which imposes a 
constant mutation probability of 0.005.  The offspring are evaluated, ranked, and proceed to become the parents of the 
next generation.  For this experiment, we maintained a constant population size of 200 and ran the algorithm for 5,000 
generations for a total of one million objective-function evaluations.  
 
2.2.2  Hierarchical Bayesian optimization algorithm (hBOA) 
 
HBOA used the same chromosomal encoding scheme as the SGA (Figure 3) but maintained a much larger population 
size of 5,000 individuals.  In order to keep the total number of objective-function evaluations the same for both 
approaches, hBOA was allowed to run for 200 generations for a total of one million function evaluations.  We used 
restricted tournament selection and set the tournament size to 12, based on empirical observations.  We employed the 
same bit-wise mutation probability as with the SGA, 0.005.  The maximum number of incoming edges for a single node 
in the Bayesian network was limited to four to avoid unnecessary linkage complexity.  Elitism was adopted.  In each 
generation, parental candidate solutions were evaluated and ranked, and those in the bottom half were replaced by newly 
generated offspring. 
 
2.2.3 Objective Function 
 
The objective function is a MATLAB subroutine, which was 
used by both the SGA and hBOA to evaluate candidate 
solutions.  For each chromosome in the population, the 
subroutine extracts the 24 complex weights and computes the 
corresponding far-field radiation patterns for five discrete 
frequencies (9.0, 9.48, 10.0, 10.52, and 11.0 GHz).  This 
experiment employed three variations of the objective function, 
which are described below as Cases 1, 2, and 3.  (Note that for 
this experiment, we defined fitness such that lower values 
correspond to higher quality solutions.  Traditionally, fitness is 
defined such that higher values correspond to higher quality 
solutions). 
 
Figure 4 shows the objective function corresponding to Case 1.  
The pink curve is a typical far-field radiation pattern produced 
by the system at a specific frequency and for a given set of 
complex weights, wi.  The x-axis represents u-space (i.e., sinθ), 
and the y-axis measures the normalized amplitude of the pattern in decibels.  The black “mask” represents the objective 
function, which is divided into a main-beam region and a sidelobe region.  For this case, we perform a point-by-point 
subtraction of the mask from the pattern.  An error value Ek is computed by calculating the mean sum of the squared 
differences between the pattern and mask:  

 

              ( ) [ ] ( )∑
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Figure 4.  Case 1 objective function. 



 

 6

where w represents the vector of complex weights, fk is the kth discrete frequency, patterni and maski represent the ith 
point of the radiated pattern and mask, respectively, and U represents the total number of points in the radiation pattern.  
Note that no penalty is administered when the pattern lies below the mask in the sidelobe region (i.e., if the difference 
between the pattern and mask is negative, it is not used in the computation).  In essence, we’re trying to force the pattern 
to conform to the mask in the main-beam region while forcing the pattern to lie below the mask in the sidelobe region.  
Also note that we are “overshooting” by trying to force the algorithm to find a solution with –40 dB sidelobes in hopes 
that it will at least be able to obtain –30 dB.  This lack of efficiency is an inherent weakness of this objective function.  
The overall Case 1 fitness value, F1(w), is the average of the error across the entire frequency band: 
 

∑=
K

k
kE

K
wF 1)(1

, (4) 

 
where K is the total number of discrete frequencies (and is equal to 5 for our experiment). 

Figure 5 shows the objective function used for both Cases 2 and 3.  For Case 2, the error has two components, 
the first of which is as follows: 

 
( ) ( )[ ]201, 1, upatternfwE kk −= , (5) 

 
where u0 is the desired steering angle of the pattern peak (u0 = 0.7071 for this experiment).  In essence, we need to 
ensure that the peak of the normalized pattern in the main-beam region coincides with the desired steering angle u0.  The 
second error component is: 
 
                             ( ) 2

2, , MSLfwE kk = ,   (6) 
 
where MSL refers to the “maximum sidelobe level” (i.e., the maximum level of the radiation pattern in the sidelobe 
region).  In other words, we’re trying to maximize the difference between the normalized pattern peak and the maximum 
sidelobe level as illustrated in Figure 5.  The Case 2 fitness value, F2(w), is the mean summation of the error components 
across the entire frequency band: 
 

                             ( )∑
=

+=
K

k
kk EE

K
wF

1
2,1,2

1)( . (7) 

 
It is clear that the objective function for Case 2 involves only two subtractions, rather than a point-by-point comparison 
of the pattern to the mask.  This property renders Case 2 more computationally efficient than Case 1.  Similar to Case 1, 
however, the overall fitness value for a given set of complex weights is the average of the error across the entire 
frequency band.   

Case 3 is identical to Case 2, except the overall fitness value, F3(w), is equal to the maximum error across 
frequency: 

 
                             ( )2,1,3 max)( kkk EEwF += .       (8) 

 
In other words, Cases 1 and 2 are aimed at minimizing the mean error across frequency, whereas Case 3 minimizes the 
maximum error across frequency.  Of the three objective functions, Case 3 is the most relevant to our particular problem, 
since we are ultimately trying to minimize the maximum sidelobe level across the entire frequency band. 
 
2.3 Results: SGA vs. hBOA 
 
We ran each case three times applying both the SGA and hBOA.  Figure 6 shows the optimized far-field radiation 
patterns for the first run of each case at a frequency of 9.00 GHz (we chose to present this frequency, because it 
represents the worst-case system performance for both optimization approaches and for all three cases).  In each plot, the 
optimal SGA solution is depicted by the blue solid line, and the optimal hBOA solution is represented by the red dotted 
line.  Again, keep in mind that we defined fitness such that lower values correspond to higher quality solutions.   
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Figure 6 shows that the SGA and hBOA perform similarly when the Case 1 objective function is implemented.  In 
particular, both approaches find solutions corresponding 
to a maximum sidelobe level of approximately -23 dB; 
thus, one may be tempted to assume that both algorithms 
perform equally well for this case.  Yet, we found that the 
mean fitness across all three runs is 33% higher for the 
SGA when compared to hBOA, and the standard 
deviation of the fitness across all three runs for the SGA 
exceeds that for hBOA by a factor of 175!  These results 
imply that, given enough runs, the best-quality SGA 
solution may be comparable to the best-quality hBOA 
solution; however, hBOA seems to be a much more 
consistent and reliable search mechanism. 

HBOA slightly outperforms the SGA when the Case 2 
objective function is implemented.  Here, we see that the 
peak sidelobes corresponding to the SGA and hBOA are -
25 dB and -27.5 dB, respectively – a difference of 2.5 dB.  
For the Case 3 objective function, we see a huge difference in solution quality between the SGA and hBOA.  Whereas 
the peak sidelobe of the hBOA solution is -28 dB, the radiation pattern corresponding to the best SGA solution doesn’t 
have a well-defined main lobe and possesses sidelobes as high as -6 dB.  

Overall, these results are not surprising.  The 
different objective functions represent drastically 
different solution spaces.  Case 1 involves forcing 
a function to a mask, which is considered a GA-
easy problem, because taking the average makes 
the fitness-function landscape smooth.  Thus, we 
see that, in this case the SGA performs 
comparably to hBOA.  Cases 2 and 3 are 
considered GA-difficult, because the min/max 
nature of the objectives give rise to a solution 
space that contains many local minima.  The 
SGA, therefore, easily fell into some local 
minimum and was not capable of exploring the 
landscape globally.  HBOA, on the other hand, 
was able to better identify the linkage of the 
problem, which allowed it to recombine salient 
pieces of information without disrupting good 
building blocks.    

To conclude, for simple problems SGAs are 
preferred, since they are computationally 

inexpensive and the solution quality is comparable to that of competent GAs; however, for difficult problems competent 
GAs should be adopted because, based on our observations, these techniques are able to achieve higher-quality solutions 
than SGAs. 
 
 

3 POLYOMINO SUBARRAYS 
 
This section describes a method to measure the “degree of similarity” between two arbitrary planar array geometries.  
Basically, we borrow a concept from neural network theory, which we refer to as the “dot-product metric,” to effectively 
categorize polyomino arrays based on their degree of similarity.  Section 3.1 introduces the concept of a polyomino-
subarray architecture for a planar array.  Section 3.2 provides an overview of the dot-product metric and describes its 
application to this problem.  Finally, Section 3.3 presents our results and conclusions. 

Figure 5.  Objective function for Cases 2 and 3. 

Figure 6.  Optimization results. 



 

 8

 
3.1 Polyomino subarrays 
 
Phased-array systems are typically designed to operate over a finite frequency band.  For small arrays, time-delay units 
are often inserted behind each element to prevent the main beam of the radiated pattern from “squinting” as the 
frequency of operation strays from the center frequency.  As the number of array elements increases, however, it 
becomes prohibitively expensive to insert time delay at the element level; thus, time delay is introduced by using phase 
shifters at the element level and time-delay units behind rectangular groups of elements, or subarrays.  Thus, if we 
construct an array architecture, which consists of N-element subarrays, we can reduce the number of time-delay units by 
a factor of N – a substantial cost savings.  Rectangular subarrays, however, come with a heavy price.  Typically, one 
element in each subarray is chosen to be the “phase center,” which simply means that it is the phase reference for all 
other elements within the subarray.  Usually, all subarrays within the array have identical phase centers; thus, the 
periodic nature of the subarray phase centers in a rectangular-subarray architecture leads to significant quantization lobes 
in the radiated pattern.  Obviously, quantization lobes represent severe pattern degradation. 
 
There have been several recent papers describing the use of random or irregular-shaped subarrays (i.e., non-rectangular) 
to randomize the phase-center locations of the subarrays, which in turn, leads to quantization lobe suppression [12, 13].  
In addition, we have shown that the use of polyomino-shaped subarrays can provide significant quantization lobe 
suppression and that the subarrays can be realized entirely in the control network that feeds the elements [14, 15, 16]. 
 

Polyominos are figures composed of elements on a square 
grid.  As depicted in Figure 7, a polyomino of order N 
contains N square elements, where each element shares a 
common side with at least one other element (i.e., elements 
can be connected along the x- and y-dimensions only, not 
diagonally).  Figure 7 shows examples of polyominos 
where N = 2 (domino), 4 (tetromino), and 8 (octomino).  
When every element of a rectangular grid belongs to one, 
and only one, polyomino shape, we say the grid is perfectly 
“tiled.”  Figure 8 shows a perfect tiling of a 32 x 32-
element grid using L-shaped octominos.  We can use this 
tiling to represent the subarray architecture of a 32 x 32-
element antenna array. 
 
We are currently conducting a trade-space study in which 
array performance characteristics are measured as a 
function of array size, subarray size, and polyomino shape.  
We use an automated tiling program [17] in conjunction 
with an electromagnetics simulation code to generate 

hundreds of arrays consisting of polyomino subarrays.  In order to get 
meaningful results, we need to analyze a large number of arrays for each array 
type.  For example, suppose we want to directly compare the performance of an 
array of L-shaped octomino subarrays with an array of C-shaped octomino 
subarrays.  For each shape, we could generate 100 arrays and conduct a 
statistical analysis of array performance.  Before we begin the analysis, 
however, we need a method to ensure that the 100 tilings for each shape 
represent a uniform sampling of the space of possible tilings for that shape and 
array size.  For example, consider a 32 x 32-element array of 128 L-shaped 
octominos.  There are literally millions of ways to perfectly tile the array.  If we 
wish to perform a statistical analysis of array performance with respect to the 
tiling geometry, we need to use a set of tilings such that every tiling within the 
set has a significantly “different” geometry from every other tiling.  The next section describes the metric we used to 
measure the degree of similarity between tilings.        
 

Figure 7.  Examples of polyominos. 

Figure 8.  Perfect tiling of a 32 x 32 –
element grid using L-shaped octominos. 
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3.2 Dot product metric 
 
In order to measure the degree of similarity between two arbitrary tilings, we apply what we call the dot-product metric.  
This metric is implemented in neural network theory for pattern classification problems [18].  Basically, each pattern 
(i.e., tiling) is represented as a multi-dimensional vector.  The angle between any two vectors A and B can be computed 
using the following: 

 

                            
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ •
= −

BA
BA

AB v1cosθ .                     (9)   

        
Smaller values of θ correspond to patterns that have a high degree of similarity, whereas larger values of θ indicate 
dissimilar patterns. 

 
To illustrate this point, consider the pattern classification problem of 
Figure 9.  Here, a 3 x 5 grid is used to represent numerical values from 0 
to 9 by blackening the appropriate blocks.  The pattern which represents 
the number zero is shown at the top of the figure.  If we assign each black 
box a value of -1 and each white box a value of 1, we can describe this 
pattern in vector format (by taking the values column-wise) as follows: 
V0 = [-1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1].  The patterns 
representing the numerals one and eight are shown at the bottom of the 
figure.  Applying equation (9), it can be shown that the dot-product angle 
between patterns zero and one, θ01, is 137.2°, whereas θ08 is only 29.9°.  
These results are expected, since the “zero” pattern is very similar to the 
“eight” pattern (i.e., differs by only a single block-value), whereas the 
“zero” pattern is quite dissimilar to the “one” pattern (i.e., the two 
patterns have only two blocks in common). 

 
Consider the L-shaped octomino.  There exist eight 
orientations as shown in Figure 10.  Each orientation is 
assigned a unique bipolar, binary representation; thus, all eight 
elements within the octomino are assigned the same binary 
number.  Again, taking the array elements column-wise, a 
3,072-element vector is formed (i.e., 1,024 elements x 3-bit 
representation) for each tiling.  When the tiling shown at the 
top of the figure is compared to the tiling directly below, we 
see that the dot-product angle is only 10.1°.  This result is 
expected, since these two tilings differ only in the small area 
indicated by the circles; otherwise, the tiling geometries are 
identical.  On the other hand, the dot-product angle between 
the top tiling and the bottom-right tiling is much larger, 
indicating that the two patterns are dissimilar, and this 
dissimilarity is easily recognized by a simple visual 
comparison. 
 
3.3 Results 
 
We generated 99 32 x 32-element arrays of L-shaped octominos and computed the dot-product angle between each tiling 
and every other one.  The values for θ ranged from roughly 75° to 105°, indicating that there is a fairly high degree of 
dissimilarity across the entire set of tilings.  We subsequently computed the far-field radiation patterns of all 99 arrays 
and calculated the peak sidelobe level for each.  Figure 11 is a histogram of peak sidelobe level for all 99 arrays at a 
normalized frequency of f / f0 = 0.75, where f0 represents the center frequency.  The x-axis represents the amplitude of 

Figure 9.  Dot-product-metric example. 

Figure 10.  Dot-product metric used to determine degree of 
similarity among tilings of L-shaped octominos. 
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the peak sidelobe level in decibels, and the y-axis represents the number of tilings contained in each amplitude bin.  Note 
that the histogram is a crude approximation of a Gaussian distribution, 
which is what one would expect if the 99 tilings truly represent a random 
sampling of the space of possible tilings.  In other words, if we had chosen 
a set of tilings which exhibit a high degree of similarity across the entire set 
(i.e., small dot-product angle), the array performance corresponding to each 
tiling would be very similar, and the histogram would consist of a single 
amplitude bin.  This result lends support to the validity of the dot-product 
metric as an estimator of similarity among tilings. 
 
 
 
 

4 CONCLUSION 
 

This paper has described the application of biologically-inspired algorithms and concepts to the design of wideband 
antenna arrays.  In particular, we have demonstrated the merits of applying competent GAs to difficult problems in 
which the solution space contains many local minima.  HBOA was able to learn the linkage of the optimization problem 
and find an acceptable solution even when a computationally convenient, but GA-difficult, objective function was 
employed.  The SGA, on the other hand, could only find a reasonably good solution when a more conventional, 
computationally expensive objective function was implemented.  We have also demonstrated the validity of using the 
dot-product metric to measure the degree of similarity among a set of polyomino tilings.  This allows us to sample the 
space of possible tilings uniformly, allowing us to calculate array performance characteristics as a function of tiling 
geometry.  
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